What is a poisson probability distribution?

It is a discrete probability distribution of random variable x such that

- 1. The experiment consists of counting the number of times, x, an event occurs in a given interval.
- 2. The interval can be an interval of time, area, or volume.
- 3. The the probability of an event occurring is the same for each interval.
- 4. The number of occurrences in one interval is independent of the number of occurrences in other intervals .

Then the probability that the first success will occur on trial number x is

$$P(x) = \frac{\mu^x \cdot e^{-\mu}}{x!}$$

Where $e \approx 2.718$ and μ is the mean number of occurrences per interval and $\sigma^2 = \mu$.

Poisson Probability Distribution & TI:

When you have	Use TI command
P(x=a)	$poissonpdf(\mu, a)$
$P(x \le a)$	$poissoncdf(\mu, a)$
$P(x \ge a)$	$1 - \text{poissoncdf}(\mu, a - 1)$

How to find the TI Command:

Example:

The mean number of business failures per day in California in recent year was about 100. Find the probability that

- 1. exactly 95 businesses will fail in any given day.
- 2. fewer than 95 businesses will fail in any given day.
- 3. more than 110 businesses will fail in any given day.
- 4. between 90 and 110, inclusive, businesses will fail in any given day.

Solution:

1. exactly 95 businesses will fail in any given day. $\Rightarrow P(x = 95)$

$$P(x = 95) = \frac{100^{95} \cdot e^{-100}}{95!}$$

= poissonpdf(100, 95)
\approx 0.0360

2. fewer than 95 businesses will fail in any given day. $\Rightarrow P(x < 95)$

$$P(x < 95) = P(x \le 94)$$

= poissoncdf(100, 94)
 ≈ 0.2952

3. more than 110 businesses will fail in any given day. $\Rightarrow P(x > 110)$

$$P(x > 110) = P(x \ge 111)$$

= 1 - P(x \le 110)
= 1 - poissoncdf(100, 110)
 ≈ 0.1471

4. between 90 and 110, inclusive, businesses will fail in any given day.. $\Rightarrow P(90 \le x \le 110)$

$$P(90 \le x \le 110) = P(x \le 110) - P(x \le 89)$$

= poissoncdf(100, 110) - poissoncdf(100, 89)
 ≈ 0.7065